Applied Imitation Learning for Autonomous Navigation in Complex Natural Terrain

نویسندگان

  • David Silver
  • J. Andrew Bagnell
  • Anthony Stentz
چکیده

Rough terrain autonomous navigation continues to pose a challenge to the robotics community. Robust navigation by a mobile robot depends not only on the individual performance of perception and planning systems, but on how well these systems are coupled. When traversing rough terrain, this coupling (in the form of a cost function) has a large impact on robot performance, necessitating a robust design. This paper explores the application of Imitation Learning to this task for the Crusher autonomous navigation platform. Using expert examples of proper navigation behavior, mappings from both online and offline perceptual data to planning costs are learned. Challenges in adapting existing techniques to complex online planning systems are addressed, along with additional practical considerations. The benefits to autonomous performance of this approach are examined, as well as the decrease in necessary designer interaction. Experimental results are presented from autonomous traverses through complex natural terrains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Performance Outdoor Navigation from Overhead Data using Imitation Learning

High performance, long-distance autonomous navigation is a central problem for field robotics. Efficient navigation relies not only upon intelligent onboard systems for perception and planning, but also the effective use of prior maps and knowledge. While the availability and quality of low cost, high resolution satellite and aerial terrain data continues to rapidly improve, automated interpret...

متن کامل

Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain

Rough terrain autonomous navigation continues to pose a challenge to the robotics community. Robust navigation by a mobile robot depends not only on the individual performance of perception and planning systems, but on how well these systems are coupled. When traversing complex unstructured terrain, this coupling (in the form of a cost function) has a large impact on robot behavior and performa...

متن کامل

Learning Rough-Terrain Autonomous Navigation

Autonomous navigation by a mobile robot through natural, unstructured terrain is one of the premier challenges in field robotics. The DARPA UPI program was tasked with advancing the state of the art in robust autonomous performance through challenging and widely varying environments. In order to accomplish this goal, machine learning techniques were heavily utilized to provide robust and adapti...

متن کامل

On-Line Learning of the Traversability of Unstructured Terrain for Outdoor Robot Navigation

We address the problem of learning to recognize traversable terrain in an unstructured outdoor environment a core functionality for autonomous robot navigation. The traversability learning problem is challenging for two reasons. First, while general-purpose sensing can be used to identify the existence of particular terrain features such as vegetation and sloping ground, the traversability of t...

متن کامل

Perceptual Interpretation for Autonomous Navigation through Dynamic Imitation Learning

Achieving high performance autonomous navigation is a central goal of field robotics. Efficient navigation by a mobile robot depends not only on the individual performance of perception and planning systems, but on how well these systems are coupled. When the perception problem is clearly defined, as in well structured environments, this coupling (in the form of a cost function) is also well de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009